UNIT-I
MATHEMATICAL MODELLING OF CONTROL SYSTEMS

Topics: Concepts of Control Systems- Open Loop and Closed Loop control
systems. Mathematical modeling —-Transfer function, Modeling of electrical
systems, mechanical systems, Electrical analogy of mechanical systems.
Block diagram representation of systems - Block diagram algebra. Signal
flow graph - reduction using Mason’s gain formula. Feedback Control
System Characteristics- Sensitivity of Control Systems to Parameter
Variations, Disturbance Signals in a Feedback Control System.

INTRODUCTION:
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EXAMPLE-1: Find the Laplace transform of f(t) =1
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CONCEPTS OF CONTROL SYSTEMS

System : A system is a combination or an arrangement of different physical components
which act together as an entire unit to achieve certain objective.

Input Output
. System >

\ 4

Control system : To control means to regulate, to direct or to command. Hence a control
system is an arrangement of different physical elements connected in such a manner so as to
requlate, direct or command itself or some other system

Input Control Output
System

Plant : The portion of a system which is to be controlled or regulated is called the plant or
the Process.

Controller : The element of the system itself or external to the system which controls the
plant or the process is called controller.

Input : It is an applied signal or an excitation signal applied to a control system from an
external energy source in order to produce a specified output.

Output : It is the particular signal of interest or the actual response obtained from a control
system when input is applied to it.

Disturbances : Disturbance is a signal which tends to adversely affect the value of
the output of a system. If such a disturbance is generated within the system itself, it is
called an internal disturbance. The disturbance generated outside the system acting as
an extra input to the system in addition to its normal input, affecting the output
adversely is called an external disturbance.
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CLASSIFICATION OF CONTROL SYSTEMS

1) Natural control systems : The biological systems, systems inside human being are
of natural type.

Example 1 : The perspiration system inside the human being is a good example of
natural control system. This system activates the secretion glands, secreating sweat
and regulates the temperature of human body.

2) Manmade control systems : The various systems, we are using in our day to day
life are designed and manufactured by human beings. Such systems like vehicles,
switches, various controllers etc. are called manmade control systems.

Example 2 : An automobile system with gears, accelerator, braking system is a
good example of manmade control system.

3) Combinational control systems : Combinational control system is one, having
combination of natural and manmade together i.e. driver driving a vehicle. In such
system, for successful operation of the system, it is necessary that natural systems
of driver alongwith systems in vehicles which are manmade must be active.

4) Time varying and time - invariant systems : Time varying control systems are
those in which parameters of the systems are varying with time. It is not
dependent on whether input and output are functions of time or not. For
example, space vehicle whose mass decreases with time, as it leaves earth. The
mass is a parameter of space vehicle system. Similarly in case of a rocket,
aerodynamic damping can change with time as the air density changes with the
altitude. As against this if even though the inputs and outputs are functions of
time but the parameters of system are independent of time, which are not
varying with time and are constants, then system is said to be time invariant
system. Different electrical networks consisting of the elements as resistances,
inductances and capacitances are time invariant systems as the values of the
elements of such system are constant and not the functions of time.

5) Linear and nonlinear systems : A control system is said to be linear if it satisfies
following properties.

a) The principle of superposition is applicable to the system. This means the
response to several inputs can be obtained by considering one input at a time and
then algebraically adding the individual results.

Mathematically principle of superposition is expressed by two properties,

i) Additive property which says that for x and y belonging to the domain of the
function f then we have,

fix +y) = f(x) + f(y)

ii) Homogeneous property which says that for any x belonging the domain of the
function f and for any scalar constant o we have,

fo x) = o f(x)
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b) The differential equation describing the system is linear having its coefficients as
constants.

c) Practically the output ie. response varies linearly with the input ie. forcing
function for linear systems.

A control system is said to be nonlinear, if,
a. It does not satisfy the principle of superposition.
b. The equations describing the system are nonlinear in nature.

2

The function f(x) = x“ is nonlinear because

(xq +><2)2 :t(xljz +(x2)2

2

f(xq+x2)

and f(ot x) (o x)2 #o x° where o = Constant

The equations of nonlinear system involves such nonlinear functions.

c. The output does not vary linearly for nonlinear systems.

6) Continuous time and discrete time control systems : In a continuous time control
system all system variables are the functions of a continuous time variable ‘t'.
The speed control of a d.c. motor using a tachogenerator feedback is an example of
continuous data system. At any time ‘t’ they are dependent on time. In discrete
time systems one or more system variables are known only at certain discrete
intervals of time. They are not continuously dependent on the time.

Signal
Signal

VAAANL I
VATAAY [T1

(a) Continuous signal (b) Discrete signal

7) Deterministic and stochastic control systems : A control system is said to be
deterministic when its response to input as well as behaviour to external
disturbances is predictable and repeatable. If such response is unpredictable,

system is said to be stochastic in nature.

8) Lumped parameter and distributed parameter control systems : Control system
that can be described by ordinary differential equations is called lumped
parameter control system. For example, electrical networks with different
parameters as resistance, inductance, etc. are lumped parameter systems. Control
systems that can be described by partial differential equations are called
distributed parameter control systems. For example, transmission line having its
parameters resistance and inductance totally distributed along it.
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9) Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO)
Systems : A system having only one input and one output is called single input
single output system. For example, a position control system has only one input
(desired position) and one output (actual output position). Some systems may have

multiple type of inputs and multiple outputs, these are called multiple input

multiple output systems.

OPEN-LOOP CONTROL SYSTEM

Those systems in which the output has no effect on the control action, i.e. on the input are called
open-loop control systems. In other words, in an open-loop control system, the output is neither
measured nor fed back for comparison with the input. Open-loop control systems are not
feedback systems. Any control system that operates on a time basis is open-loop.

Reference

input
—_—

Controller

Actuating
signal

ADVANTAGES:

-
>

Controlled
process

(plant)

o These systems are very much suitable for use

o The design of this system is very simple.

« The maintenance aspect of this system is simple.
o The stability is good for some extent of time in this control system

« The convenience in usage is very good

e The cost is low when compared to other systems.
e The output produced is stable

DISADVANTAGES:

e« The automatic correction of output deviations cannot be done in this
control system

e Inaccuracy exists in these systems

e There exists less bandwidth

e Timely recalibration is required in this control system

e As it is a non-feedback system, the automation of the process will not
be initiated

e The disturbances from outside also show the impact on the required

output

APPLICATIONS:

Electric bulb, TV remote control, Washing Machine, Volume on the stereo
system, Clothes drier, Servo motor or stepper motor, Door lock systems,

Coffee or tea making machine, Inkjet printers etc.

Controlled
variable

(output)
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EXAMPLE:

TRAFFIC CONTROL SYSTEM:
Traffic control by means of traffic signals operated on a time basis

constitutes an open-loop control system. The sequence of control signals
is based on a time slot given for each signal. The time slots are decided
based on a traffic study. The system will not measure the density of the
traffic before giving the signals. Since the time slot does not change
according to traffic density, the system is an open-loop system.

TEMPERATURE CONTROL SYSTEM (ELECTRIC FURNACE):

Sensor
5 : v A/D e core o
Electric [ }— C : e J—pl Interface |5 U_lgndl
Furnace : _onverter Display
B

™ Heating element,

Relay —Q
Control AC supply
Circuit 5

The electric furnace shown below is an open-loop system. The output
in the system is the desired temperature. The temperature of the system is
raised by heat generated by the heating element. The output temperature
depends on the time during which the supply to the heater remains ON. The
ON and OFF of the supply are governed by the time setting of the relay.

The temperature is measured by a sensor, which gives art analog
voltage corresponding to the temperature of the furnace. The analog signal
is converted to a digital signal by an Analog-digital converter (AD converter).
The digital signal is given to the digital display device to display the
temperature. In this open-loop system, if there is any change in output
temperature then the time setting of the relay is not altered automatically.

PageB



CLOSED-LOOP CONTROL SYSTEM

Feedback control systems are often referred to as closed-loop control systems. In practice, the
terms, ‘closed-loop control” and ‘feedback control” are used interchangeably. In a closed-loop
control system, the actuating error signal which is the difference between the input signal and
the feedback signal (which may be the output signal itself or a function of the output signal and
its derivatives and/or integrals) is fed to the controller so as to reduce the error and bring the
output of the system to a desired value. A system that maintains a prescribed relationship
between the output and the reference input by comparing them and using the difference as a
means of control is called a feedback control system. The term ‘closed-loop control’ always
implies the use of feedback control action in order to reduce system error.
The general block diagram of an automatic control system is shown in Figure It consists

of an error detector, a controller, a plant and feedback path elements.

Error
Reference detector Error Actuating

input signal signal Output
Plant

y

Controller

Feedback
signal

Feedback path
clements

The reference input corresponds to desired output. The feedback path elements convert the
output to a signal of the same type as that of the reference signal. The feedback signal is
proportional to the output signal and is fed to the error detector. The error signal generated by
the error detector is the difference between the reference signal and the feedback signal. The
controller modifies and amplifies the error signal to produce better control action. The modified
error signal is fed to the plant to correct its output.

ADVANTAGES:

e It reduces error in the output by automatically adjusting the system’s
input.

« This system improves the stability of a system.

e It controls the sensitivity of the system to external factors.

o This control system enhances the robustness of the system.

e It produces reliable and repeatable performance.

e This system also reduces the disturbance compared to the open-loop
control system.

e Improved reference tracking

DISADVANTAGES:

o This system many times requires a complex design with more than
one feedback path to get the desired outputs.

o The controller becomes unstable and starts to oscillate when the gain
of the controller is too sensitive to the changes in its input signal.

o This system is very expensive.
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APPLICATIONS:

Automatic toaster, Automatic washing machine, Air conditioner, Automatic
water level controller in water tanks, DC Motor speed controller, Home
heating, Missile launching system, Boiler control, Car’s cruise control etc.

EXAMPLE:

TRAFFIC CONTROL SYSTEM:
A traffic control system can be made as a closed-loop system if the

time slots of the signals are decided based on the density of traffic. In a
closed-loop traffic control system, the density of the traffic is measured on
all the sides and the information is fed to a computer. The timings of the
control signals are decided by the computer based on the density of traffic
Since the closed-loop system dynamically changes the timings, the flow of
vehicles will be better than the open-loop system.

TEMPERATURE CONTROL SYSTEM (ELECTRIC FURNACE):

Sensor
Electric | |

Fumacq:_—’j,__, A/D i Int ce

Converter |

Il
d\Heatin_g element

. |
{ i

Control |g Amplifier
Circuit :

jac |

Supply

] §
} H 1 c - .
\¢«—— L Reference input

of |

(Desired temperature)

The electric furnace shown in the figure is a closed-loop system
example. The output of the closed-loop system is the desired temperature
and it depends on the time during which the supply to the heater remains
ON.

The switching ON and OFF of the relay is controlled by a controller
which is a digital system or computer. The desired temperature is input to
the system through the keyboard or as a signal corresponding to the desired
temperature via ports. The actual temperature is sensed by the Sensor and
converted to a digital signal by the A/D converter.

The computer reads the actual temperature and compares it with the
desired temperature. If it finds any difference then it sends the signal to
switch ON or OFF the relay through D/A converter and amplifier. Thus the
system automatically corrects any changes in output. Hence it is a closed-
loop system.
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COMPARISON BETWEEN OPEN-LOOP AND CLOSED-LOOP CONTROL SYSTEMS

SL .
No. Open-loop control systems Closed-loop control systems
| No feedback 1s given to the control system | A feedback 1s given to the control system
2 Cannot be intelligent Intelligent controlling action
: . - . Closed loop control introduces the
There is no possibility of undesirable et oo )
3 o . . possibility  of  undesirable  system
system oscillation(hunting) o :
oscillation(hunting)
The output will not very for a constant | In the system the output may vary for a
4 mmput, provided the system parameters | constant input, depending upon the
remain unaltered feedback
System output variation due to variation in | _ - .
y P . System output variation due to variation in
parameters of the system 1s greater and the ‘ _ ) o
. i parameters of the system i1s less.
output very in an uncontrolled way
6 Error detection 1s not present Error detection is present
7 Small bandwidth Large bandwidth
8 More stable Less stable or prone to mstability
9 Affected by non-linearities Not affected by non-linearities
10 | Very sensitive in nature Less sensitive to disturbances
11 | Smmple design Complex design
12 | Cheap Costly

MATHEMATICAL MODELING OF CONTROL SYSTEMS

TRANSFER FUNCTION:

Mathematically it is defined as the ratio of Laplace transform of output (response) of the
system to the Laplace transform of input (excitation or driving function), under the assumption
that all initial conditions are zero.

If T(s) is the transfer function of the system then,

Laplace transform of output  C(s)

T(s) =

Laplace transform of input

R(s)

The properties of the transfer function are as follows:

1.

r

= W

for nonlinear systems.

The transfer function is defined only for a linear time-invariant system. It is not defined

The transfer function between an input variable and an output variable of a system is

defined as the Laplace transform of the impulse response.

Alternatively, the transfer function between a pair of input and output variables of a

system is the ratio of the Laplace transform of the output to the Laplace transform of

the input.

N

All initial conditions of the system are set to zero.

The transfer function is independent of the input of the system.

The transfer function of a continuous-data system is expressed only as a function of the
complex variable s. It is not a function of the real variable time, or any other variable
that is used as the independent variable. For discrete-data systems modelled by
difference equations, the transfer function is a function of z when the z-transform is
used.
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MODELING OF ELECTRICAL SYSTEMS

The important elements of an electrical network are R, L and C. The various
expressions related to these parameters in time domain and Laplace domain are given in
the Table neglecting the initial conditions.

Element Time domain Laplace domain Laplace domain
expression for voltage  expression for voltage  behaviour
Resistance R i(t) xR I(s)R R
Industance L L di(t) sLI(s) sl
dt
Capacitance C 1 J.i(t) dt 1 I(s) 1
C sC sC
Element Voltage across the element Current through the element
iw R v(t) = Ri(t) ity =20
+ = R
_v(t)
i(t) L d. S
: v(t) =L—i(t t)=—v(t) dt
i O=L—i®) itty=—Jv(t)
v(t)
Ly C e i(t) = c 0
vit)
PROBLEMS

1) Determine the transfer function Vo(s) / Vi(s) of the electrical system

shown in the fig.

SOL:

Ry
\ MWWV \
R2
V'I Vo
C
| 1 |
The curent flowing is shown in the Fig. R
' 1
vi(t) = Input 1° T VWW— N )t
v,(t) = Output Ry
Vo (s) vi(t) ,_> - V(t)
TE = i(t) *+ C
Vi(s) _—|—
Fc L:

Applying KVL to the loop, _

Si(h) Ry — i) Ry - %Ii(t) +vi(t) = 0 (1)

Pagel [I



Taking Laplace transform and neglecting initial conditions,

I
I(s) R, + I(s) Ry + =& _ v s)
C s
Vi(s) sC V;(s)
I(s) = = ..(2)
L sC (Rl + R2) +1
R;+Ry + <
The output equation is,
V() = i(t) Ry + é [ic) de ..3)
Taking Laplace transform,
1 I(s 1
Vi(s) = I(s) Ry + Eg = I(s) [Rz +EJ ...(4)
) . B sC V;(s) sC Ry +1
Using (2) in (4), V(s) = {SC (R, +Ry)+1 [ C }
Vos)  sCRp+1

T.F. =
Vi(S) sC (R1+R2)+1

2) Determine the transfer function Vo(s) / Vi(s) of the electrical system
shown in the fig.

L R

v(t) () @ cC = v(t)

|

SOL:
The RLC circuit of Fig. is analysed by Kirchhoff’s voltage law applied to the closed loop.

d . 1¢.
The system equation is, V;(f) = LE‘ + Ri + r idt

Now taking Laplace transform on both sides, we get
V.(s)=LsI(s)+ RI(s) + é](s)
(assuming all initial conditions to be zero)
V(s)= [Ls FR+ é]](s)

[LCsz + RCs +1]
s

V,(s) = I(s)

Let the output voltage v (7) be taken across the capacitor, C. Then,

1 .
v, (1) =7 det
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Taking Laplace transform on both sides of equation we get
1
V.(s)=—I(s
»(5) o (s)

(assuming all initial conditions to be zero)
Therefore, the transfer function is given by

1
VO(S) = a Cs I(S)
Vi(s) (LCs*+RCs+1) — I(s)

G(s)=

V,(s) _ I
V.(s) (LCs®>+RCs+1)

3) Determine the transfer function of an electrical system shown in the fig.
R, R2

SOL:
The s-domain network of given system is shown in the Fig.

+

T i” (s)
[ T“’QT‘“

I5(s) l
0

Applying KVL to the two loops,

1 1 . 1 1
—I]R1—11XE+12XE+Vi(S)= 0 1.e. Il|:R]+E:|_12XE =V. () .(1)
1 1 1 . 1 1 1
“IHhRy -Iryx——=-Ip) x—+[{x——=0 ie I;x—~-1I R =0 (2

22X e, TN, T, T M TG 2>{ 25, scz} @

i
]
Q
3
(1]

N
o
2
=
Q
=]

—_—
[y]

—
|

1 1 12[SC]C2R2 +C2 +C]I
=1, R =
SC1 2 [ 2+SC1 +SC2 J SC1C2
[2[SC1C2R2 +C2 ‘|‘C1]

I, = 5 ...(3)

Using equation (3) in (1),

I2 [SC1C2R2 +C1 +C2] 1 1 _
SC]CZRz +C1+C2 +52C%C2R]R2 +SR1C%+SR]C]C2—C2 o
-1 = Vi(s) —
SC1C2 %0
A




But, Vo(s) = Lix——  ie I, = sCyVy(s)
SC2

sC1C,R, +Cq +52C2C,R R, +5R{C? +sR,C,C,
SC2Vo(s) e : = Vi(s)

Vo(s) _ 1
Vi(s) S2C1C2R1R2 +S[R1C1 +R2C2 +R1C2]‘|‘1

4) Determine the transfer function of an electrical system shown in the fig.
o AW B000 000

0

o

SOL:
The s-domain network is shown in the Fig.
R, sL, sL,
L —WW——T {0 °
+ -+ - + -
+ | — 1 +
Vi(s) ; +¥ _§ R, Vo (s)
I1(s) I5(s)
© * 0 -

Applyir_lg KVL to the two loops,

TR =5LiT1(9- - 19+ L9+ Vi(s) = 0
ie. Il(s)|:R1+sL1+%il—Iz(s)x% = V.(9) (1)

1 1 . 1 1
—SLZIQ(S)—Rzlz(s)-IIZ(SHIIl(S)=0 ie. EIl(s)=12(5)[sL;_. +R, +E]

1,(s) = I(s)[s’L,C+sR,C+1] (2
Using in equation (1), Iz(s)[52L2C+sR2C+1][R1+sL1+i:|—%IZ(S) = Vi(9)
(s’L,C+sR,C+1)(sR;C+s’L;C+1) 1 |
12(5)| e -1 = Vil
2 2 _
. (S){(s L,C+sR,C+1)(sRC+s2L,C+1)-1 } - V. .3)
sC
But VO(S) = 12(5)R2 ie. 12(5):¥
2
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Vo(s) [(s°LaC+5RyC+1)(sR,C+s*L C+1)-1 | V(o
R2 SC a b
VO(S) _ SRzC

Vi(s) (s’L,C+sRyC+1)(sRyC+s’L,C+1)-1

R,C
(s3L1L,C2 +52(L;R,C% +L,R{C?%)+s(L,C+R;R,C2 +L,C) +(R;C+R,0)

5) The dynamic behaviour of the system is described by the differential
equation

dc
— 4+ 10c = 10e
dt

Where ‘e’ the input and ‘¢’ is the output. Determine the transfer function of
the system.
SOL:

Guuwen  diffvential 2 de | jpe 2 ppe

clt

J i)+ 10 ¢ls) = 1o F(s)
) Gt = 10 FE)

Taorgfon fanchen <¢® . 10
£ Stio
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MODELING OF MECHANICAL SYSTEMS

The general classification of mechanical system is of two types: (i) translational and (ii)

rotational as shown in Fig.
Mechanical
system

' '
Translational Rotational
mechanical system mechanical system

TRANSLATIONAL MECHANICAL SYSTEM

Consider a mechanical system in which motion is taking place along a straight line.
Such systems are of translational type. These systems are characterised by displacement,
linear velocity and linear acceleration.

According to Newton's law of motion, sum of forces applied on rigid body or
system must be equal to sum of forces consumed to produce displacement, velocity and
acceleration in various elements of the system.

The following elements are dominantly involved in the analysis of translational

motion systems.

i) Mass ii) Spring  iii) Friction.

LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM
x = Displacement, m :

- dx :
v = — = Velocity, m/sec

dt
dv  d*x

a = — = = Acceleration, m/sec?
dt  dt? S

f = Applied force, N (Newtons)

fo= Opposing force offered by mass of the body, N

fi = Opposing force offered by the elasticity of the body (spring), N

f, = Opposing force offered by the friction of the body (dash - pot), N
= Mass, kg ' ' '
= Stiffness of spring, N/m

B = Viscous friction co-efficient, N-sec/m

Consider an ideal mass element shown in fig ~ which has negligible friction and elasticity. Let a

force be applied on it. The mass will offer an opposing force which is proportional to acceleration of the
body.
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Let, f = Applied force b x

f_ = Opposing force due to mass

f—> M hE
d*x d?x

Here, £, « = or f_= MF Reference
: | d’x
By Newton's second law,|f=f_=M —
dt
Consider an ideal frictional element dashpot shown in fig which has negligible mass and

elasticity . Let a force be applied on it. The dash-pot will offer an opposing force which is proportional to
velocity of the body.

Let, f = Applied force H X
f, = Opposing force due to friction o I_‘ g
dx dx '
dt B Reference

dx

By Newton's second law,|f = f, = Bd_t

When the dashpot has displacement at both ends as shown in I_. X, }_. X,
fig , the opposing force is proportional to differential velocity.

d ! d f—p '_]
fboca(xl—xz) or . 8 =BE (x; —x5) _'_l
B Reference

d
-"f=fb=BI (x; = %,)

Consider an ideal elastic element spring shown in fig
which has negligible mass and friction. Let a force be applied on it.
The spring will offer an opposing force which is proportional to
lisplacement of the body. |

Let, f = Applied force *—-’X

f = Opposing force due to elasticity £ N E
Here fk X Or fk =K x K Reference
By Newton’s second law, |f=f =Kx
When the spring has displacement at both ends as shown in fig }_> X, I_"xz
the opposing force is proportional to differential displacement. o
f—r 500
fiox (x,—X,) or fi = K{x, —x3) K

s = =Kix, -x,)
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ROTATIONAL MECHANICAL SYSTEM

The model of rotational mechanical systems can be obtained by using three elements, moment.of
inertia [J] of mass, dash-pot with rotational frictional coefficient [B] and torsional spring with
stiffness [K].

When a torque is applied to a rotational mechanical system, it is opposed by opposing torques due
to moment of incrtia, friction and elasticity of the system. The torques acting on a rotational mechanical
body are governed by Newton's second Jaw of motion for rotational systems. It states that the sum of
torques acting on a body is zero (or Newton's law states that the sum of applied torques is equal to the
sum of opposing torques on a body).

LIST OF SYMBOLS USED IN MECHANICAL ROTATIONAL SYSTEM

® = Angular displacement, rad

% = Angular velocity, rad/sec

%?- = Angular acceleration, rad/secz

T = Applied torque, N-m

I = Moment of inertia, Kg-mz/rad

B = Rotational frictional coefficient, N-m/(rad/sec)
K = Stiffness of the spring, N-m/rad

TORQUE BALANCE EQUATIONS OF IDEALISED ELEMENTS

Consider an ideal mass element shown in fig which has negligible friction and elasticity. The
opposing torque due to moment of inertia is proportional to the angular acceleration.

Let, T = Applied torque.
T, = Opposing torque due to moment of inertia of the body.

d’o d’
Here T,c— or T,=J—
T TS A 4 ?j
By Newton's second law, T./ 0
d’e
’ T.= TJ = JF
Consider an ideal frictional element dash pot shown in fig which has negligible moment of

inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque which is
proportional to the angular velocity of the body.

Let, T =Appliedtorque.
T, =Opposing torque due to friction. N ﬂ E
do S 4 g T
T 0 —

de
T, oc— or T.=B—
L™ LT

By Newton's second law, |[T=T, = B%
When the dash pot has angular displacement at both ends as shown in fig the opposing torque
is propertional to the differential angular velocity. .
B T
d d
Tbxa(el'_ez) or Tb=Ba(31—92) T. o, B 8,

d
. T=T,=B—-(8,-0,)
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Consider an ideal elastic element, torsional spring as shown in fig which has negligible moment
of inertia and friction. Let a torque be applied on it. The torsional spring will offer an opposing torque
which is proportional to angular displacement of the body.

Let. T = Applied torque. , ) \_m g
T

i
T, =Opposing torque due to elasticity. 9 K , E

T <0 or T, =K8

By Newton's second law, |T=T,=K8

When the spring has angular displacement at both ends as shown in fig the opposing torque is
proportional to differential angular displacement. NN N
- Sl R X
T, =< (,-6,) or T ,=K(0,-86,) T 8 0,

T = T,=K(@®,-6,)|

PROBLEMS

1) Write the differential equations governing the mechanical system shown
in the fig. and determine the transfer function

X, | > x
B

VS . L
i Y — 1w
7 | w2 10
/ — . “ -
ST TN 7777777777V
B1 Bz

SOL:
Inthe given system, applied force 'f(t)' is the input and displacement X' is the output.

Let the displacement of mass M, be x,. The free body diagram of mass M, isshowninfig .The opposing forces acting

on mass M, are marked as f, ,, f. L. fand .

d? |—-—> X
fai =M, —”;'1' ; fm:Btg)‘(l ; f =Kxg
dt dt k1
: d "_f:m
%= Ba(x, -x); f =K(X;-x) .
By Newton's second law, ' M, le—of,
fa+h+f +f+f =0 e— I\,
o f
dx dx. d 1,
- My d121 * Br'c# + Bd_l{x1 =X+ Ky + Ky - x) =0

Ontaking Laplace transform of above equation with zero initial conditions we get,
M:s?X(8) + BiSXi(8) + Bs [X (s) - X(s)] + K X(s) +K [X(s) - X(s)] = 0
Xy(s) M;s? + (B, +B)s + (K, + K)I - X(s) [Bs +K] =0
X,(s) M;s® +(B, +B)s + (K, +K)] = X(s) [Bs +K]

‘ _ Bs+K . (1)
7 Xy(8) = X(s) M,s_z +{B; +B) s +(K; +K)
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The free body diagram of mass M, is shown infig 3. The opposing forces acting on M, are marked asf_,,f,, f,

andf,.
d®x . d f_"x
Mg why
- f{)
d
fb=8a (X—%y) k = K{x—x,) —f
M, e
By Newton's second law, —f,
b~ ho +f +H = (1) 1,
d2x dx _d
M, “a;i““ 2-&"’ Ba (x=x)+K{x - x)=1f(t)

Ontaking Laplace transform of above equation with zero initial conditions we get,

M,s® X(S) +B,SX(s) + Bs[X(s) - X(s)] + KIX(s) - X(s)] = F(s)
X(s) M52 + (B, +B)s + K] - X,(s)[Bs + K] = F(s)  wroeeee )

Subsitituting for X,(s) from equation (1) in equation (2) we get,

(Bs +K;?

X(s) [M,s2 + (B, + B)s + K] - X(s) M BBl
1+B)s+(K,

F(s)

X(s) [[M232 +(B; +B)s +K] [Ms? + (B, +B)s + (K, +K)] - (Bs + K)Z]___F(S)
Ms“ +(B,+B) s + (K, +K)

X(s) " M2 +(B,+B)s+(K, +K)
U F(s)  [Ms? + (B +B)s+(K; +K)] [Ms? + (B, +B)s +K] - (Bs + K)*

2) Write the differential equations governing the mechanical system shown
in the fig. and determine the transfer function Y2(s) / F(s).

fiy [ |B
v

SOL:
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The free body diagram of mass M, is shown in fig l_' ¥

The opposing forces are marked asf_,, fb; f,andf, b f(t)
d%, dy, . e
far = M‘.'a"t'él P b= Bd_t1 F =_K1Y1 s fe =Kaly - ¥2) M, e f,
By Newton's second law, f.q+f, +f+fo =f(t) ¢ fu
i,
d? dy
M1T’;’;+ B+ Ky + Kglys - ¥2) = 1) (1)

‘Ontaking Laplace transform of equation (1) with zero initial condition we get,

M;sY,(s) +BsY,(s) + K,Y;(s) + Ko[¥y(5) - Yo(s)] = F(s)
Yi(s)Ms® +Bs + (K, +K )] - Yp(e)K, =F(s) - @

The free body diagram of mass M, is shown in fig
The opposing forces acting on M, are f_, andf,,.
d2
fnz = Mz‘dT);gz v fe=Kalya-yi)
By Newton's second law, fp +fo =0

d
M, dzéz +Ko(y2,—yy) =0

On taking Laplace transform of above equation we get, M,

M,s%Y,(s) + K,[Y,(8) - Yy(8)] =0
Ya(s) [Ms? + Ko - Yi(s) K, = 0

L YA(8) = Yy(s) @ (3)
2

Substituting for Y,(s) from equation (3) in equation (2) we get,

[ 2
Y, (S) %—gﬂi} [Mﬁ? +Bs+ (K, + KE)]— Y,(s) K, = F(s)
2

-%52 +K,) [Ms? +Bs +(K; +K;)] - K;

Y,(s) %
2

} = F(s)

Ya(s) Kz
Fs)  [Ms?+Bs+(K,+Kp)| [Mys? +K, | -KE
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3) Write the differential equations governing the mechanical system shown
in the fig. and determine the transfer function X(s) / F(s).

}-—»x(t)

5 | M ()

AN

1 T 7T TN B,
B,
SOL:

The free body diagram of mass Mis showninfig . The opposing forces are marked as f.f,andf,

2 d d _
‘f :hﬂ_d....-)E , fh1=B1_x.- ; fb2=B2'_(X_X1) l___’x
" dt? t dt
. —f(1)
' nis,
By Newton's second law the force balance equatio t
fm =+ flﬂ -+ fb2 = f(t) M . I fm
d?x dx d P
M-+ B, —+B, —(x=x,) =f(t) 2
M eI dt( !

On taking Laplace transform of the above equation we get,
Ms2 X(s) +B, s X(s) +B, s [X(s) - X(s)] = F(s)
[Ms? + (B, +B,) s| X(s)-B;s X(s) =F(s) -~ (1)
The free boay diagram atthe meeting point of spring and dashpot is shown in fig
The opposing forces are markedas £ and f,

d
fm:BQ'&t“(xr'x)i fi =KX,

By Newton's second law, f, +f, =0 X
d ' . - -
B —(X —x)+Kx, =0 ¢ fi
2 g XX M=0
: ——f
On taking Laplace transform of the above equation we get, .

B, s [X,(s) - X(s)]+ KX(s})=0
(B, s+K) Xy(s)-B, s X(s) =0

B,s
X(s
5, 5+K () L (2)

Substituting for X, (s) from equation (2) in equation (1) we get,
B, s
B,s+K

“X{(8) =

[Ms?+(B,+B,) s| X(s)-B, s[ ] X(s) = F(s)

[[M s% +(B,+B,) 8] (B, s+K)- (B, s)z]
X(s)

=F(s)
B,s+K

CX(s) Bys+K
T F(s) [Ms?+(By+B,y)s] (B, s+K)- (B, )’
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4) Write the differential equations governing the mechanical system shown
in the fig. and determine the transfer function.

= e s el

6

(Applied Torque) {(Output)

SOL:
Letthe angular displacement of mass with momentof inertia J, be 8,. The free body diagram of J, is shown in fig
The opposing torques acting on J, are marked as Tj1 andT,.

d%0;

Ti=Jdi— ; T, =K(®,-8
T » T KG9 Wl & 5
By Newton's second law, T+ T =T ; ; Ej ‘_j .
2 7 : '
J°91+K(e, —9)=T o,
dt?
2
. (fne; gt gl )

Ontaking Laplace transform of equation (1) with zero initial conditions we get,
J, 5% 8,(s) + KO,(s) — KB(s) = T(s)

(J; 5% +K) 8,(s) - K 6(s) = T(s) l2)

The free body diagram of mass with moment of inertia J, is shown in fig
- The opposing torques acting on J, aremarked as T T and T,.

d28 d9
By Newton's secondlaw, Tp+ T, + T, =0 1,7,
2
25,32 B ke-8)-0 —
dt dt
0
d% de

dy=5+B—+K6-K6; =0
dt? dt

On taking Laplace transform of above equation with zero initial conditions we get,
J,8%6(s) + B s6(s)+K6(s)-K8,(s)=0
(J, 8% +Bs+ K) 6(s) - K6,(s) = 0
J, 82 +Bs+K |
0y9)= 23BN g 3
Substltunng for 6,(s) from equation (3) in equation (2) we get,

(J,8% +Bs +K)

(Js? +K) <

B(s) - Ko(s) = T(s)

) 2 ‘ol 2
((Jﬁ +K) (J25K+_'33+K)_K }B(S):T(S)
L

..O(s)= K . _
U T(s)  (Ii? + K) (U857 + Bs + K) - K2
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5) Write the differential equations governing the mechanical system shown
in the fig. and determine the transfer function 6(s) / T(s).

K
: 000" /
_ J; J, 7
- I| 2
T 91 B12 - 0 “
S AL, P P77 777 77777777 7 P 7777777707 e e s 77777

SOL:

Letthe angular displacement of mass with moment of inertia J, be 8,. The free body diagramof J,isshowninfig The

soposing torques actingon J, are marked as T‘1 T,,andT,. T, Toa T,

d;-‘e
Ty =d—= a2 ; T:;12=B125t‘(91‘9) v Tk =K(8;-6) %ﬁ—— )

T 6,

By Newton's second law, Tj, AT+ T =T

d, d

On taking Laplace transform of above equation with zero initial conditions we get,
Jis78,(8) +5 By, [B4(8) - 6(s)] + KBy(s) - Kbs) = T(s)

6,(5) 5% + 5By, + K- 6(s) [sB, + K] = T(s) -1

“ The free body diagram of mass with moment of inertia J, is shown in fig
The opposing torques are marked as T yTprz 1,80d T

d’o
T;2=J2d—2‘3 b12 = B12 (9*91)
Tb = B%e- ; Tk = K(e"e1)
% TaTe T
By Newton's second law, T}2+Tb,2+"rb+1'k=0 2 ‘b,\z & T
— R R
d’ do (T TT)
Jz'&'{%—&z (6 91)+BE—+K(6 8,)=0 8
d?e de, de
57~ Bagt+ 5 (B +B)+ KO -K8, =0

On taking Laplace transform of above equation with zero initial conditions we get,
J,5%0(8) — B1,804(s) + $6(s) [B;, + B] + K8(s) — KO,(s) = 0

6(s) [s%J, + S(By, +B) + K]~ 0(s) [sB,, + K] =0

6.(s)= [s°J; +5(By, +B) +K]
[sByz +K]
Substituting for 6. (s) from equation (2) in equation (1) we get,

os) (2

o3 - [stz +3(B,, +B) +K] 6(s) | -
[J;s° +sB,, +K] (sB, 7K) (sB,, +.K) 8(s) = T(s)
(J8° + 8By, +K) [J58% +5(Byy +B) + K] - (sBy, +K)° -
(B, +K) e =T6)
. B(s) _ (sByp +K)

() (U7 + By + K) [Up8” + 8(Byz + B) + K] - (sBy; + K)?
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ANALOGOUS SYSTEMS

In between electrical and mechanical systems there exists a fixed analogy and their
exists a similarity between their equilibrium equations. Due to this, it is possible to
draw an electrical system which will behave exactly similar to the given mechanical
system, this is called electrical analogous of given mechanical system and vice versa. It
is always advantageous to obtain electrical analogous of the given mechanical system as
we are well familiar with the methods of analysing electrical network than mechanical

systems.
There are two methods of obtaining electrical analogous networks, namely
1) Force - Voltage Analogy i.e. Direct Analogy.

2) Force - Current Analogy i.e. Inverse Analogy.

FORCE - VOLTAGE (OR) TORQUE - VOLTAGE ANALOGY
(MESH ANALYSIS):

Translational Rotational Electrical
Force Torque T Voltage V
Mass M Inertia | Inductance L

Tortional friction
constant B

Friction constant B Resistance R

Spring constant K N/m Tortional spring constant Reciprocal of capacitor

K Nm/rad 1/C
Displacement 'x' 0 Charge q
Velocity X = i—: ;) = % =W Current i = z—?
FORCE - CURRENT (OR) TORQUE - CURRENT ANALOGY
(NODAL ANALYSIS):
Translational Rotational Electrical
F Force T Current 1
M Mass J C
B friction B 1/R
K Spring K 1/L
x displacement 0 o
. _ dx * do ., _ do
X Velocity = dat 0= P Voltage ‘e’ = it
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PROBLEMS

1) Write the differential equations governing the mechanical system shown
in the fig. Draw the force-voltage and force-current electrical analogous
circuits and verify by writing the mesh and nodal equations.

l::xt —P X,

Vs — V. -
f i i
¢ - st ——
W, M M, 2

1 B, —1B. ”
— 4 1 o
Ve R i Pl ol o o i T i g
B,

SOL:
The free body diagram of M. isshowninfig  The opposing forces are marked as

fav e forp @nd £ I::x‘
V1

d? dx .
fy=M d1X1 i fy=B— o
dt : _—_bfrm
d \ M, > f,
biz =Bp—(xi—%2) | fi=Ki(X;=x,) "
dt —h fb12
By Newton's second law, f,, +f,; +f,,, +f, =f(t) — f
d?x dx, d
oM dt; +By— L+ Bry— (- X5) Ky~ %5) = (1) (1)
The free bedy diagram of M, is shown in ﬁg .The obposing forces are marked asf_, T fopr o BNA T,
d’x dx, d
fa=M, —52 : f,=8B : B=Bo—(,- 1 : X
m2 = M, — 2 = .2 7 b2 =Bi2 T (X3 —%y) Vi
fa=Kilxa=xy) ; fio=Kox, foz
By Newton' dlaw, g+, +4 f,=0 b
n'ssecond law, f,, +f, +f, + 5 +f, =
m2 + oz T ho +lpio + i M, —> 1,
d?x, d d >
M, dt2 82 + KXy + B — ot (X3 = Xg) + K (%, = x;) =0 (2) I

On replacing the displacements by velocity in the differential equations (1) and (2) of the mechanical system we get,

. d’ dv dx ]
e, —5 = — : -
(1 o - =v andx= I'vdt)
dv,
M1—dt- + BV +Bip(vi— Vo) +Kif(vy —vp) dt=f(t) e 3
dv, :
MQE-JrBzvzmzjv2 dt+Bp(v, — V) + K f(vy — v} dt=0 - (4)

F-V ANALOGOUS CIRCUIT:

The electrical analogous elements for the elements of mechanical system are given below.

f(t) —e(t) M, L B,—» R, K, = 1/C,
v, = ML B,— R, K,—1/C,
v, i, : B, R,
L R, L.
" VV\- T

C, C,

]
ORI if\j
T 7T
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— TN\~ TG
+ = + R i + g
di, 1 + + di, E
% - < . T s
+ Ruofi—;) R, R 5 Rya(i,— 1)) R, § R,
e(t)@ ~ - - . -
1 | o 1 1 5
— [ iy~ ip)dt == C C. 7 —|[(ip-ipdt — [ipdt Z= ¢
C1I 1772 _‘r v T_ C1I(lz i) Cljz —-l- 2
_The mesh basis equations using Kirchoff’s voltage law for the circuit shown infig are given below
di : ooy R Snon TR R 5
L=+ Ry + Ryp(iy —~ ip) + — [ (i, —i,)dt = e(t) ®
dt (64
L25"1+ R252+-1—j62 dt+R‘z(iz—i1)+l[(i2—i,)dt=O ..... (6)
dt C, C,

F-I ANALOGOUS CIRCUIT:

The electrical analogous elements for the elements of mechanical system are given below.

f(t) —>ict) M, > C,’ B, - 1/R, K, = 1L,
V, =V, M, - C, - B,=> 1R, K, = 1L,
VoY, B, — 1R, -

2.

1
1 —(V, -V
R (vi=va) R v, R R12( 2=V
12 — 7 v, 12 g— 1
v —VW—e .—’\N'\r—{ , —zjvzdt
“ . 2
o T
| L1 V2 I—‘|
l dvy Ly, e - . l ?_dﬁ ivz |
i) T dt Ry j o . -« dt 2 v
I
— vy -vp)dt
: L — J{vy —vy)dt L
o 3n " et oz 2a g

—dv1-'-iv P (Vi=V,) + Y dt=i ' ‘(
Gt R vl - vl = ) )
dv, -1 1 1 1

C —-2+— < — dt — _— _ —_ =  seee- 8
274t R, V2 L, fvdt+ Ry (Vz V1)+L1.{(V2 vy)dt=0 (8)
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2) Write the differential equations governing the mechanical system shown
in the fig. Draw the force-voltage and force-current electrical analogous
circuits and verify by writing the mesh and nodal equations.

SOL:
. A : — X,
The free body diagram of M, isshown infig  The opposing forces are marked asf_, f, andf,..
, >V, -
d X d{xy—x -
=M =B, 2 g - xa) T et
5 M, & fm
By Newton's second law, f,, +f,; +f;=0
' — f,,
d*x d(x —X2) o
M, dt; ’dt FKx=%)=0 e (1)

The free body diagram of M, isshowninfig The opposing forcesaremarkedasf_,, f,.f,,.f,andf .

—>f(t)
-8 g =8 k- > x,
ﬁn-z MZ dt2 ' fb2 s B2 dt 3 f]ﬂ = B1 dt (X; x«') 7 .
| —f
fo =KX, b e =Kixa—xy) ‘ f:
: fm
By Newton's second law, f,, + f0 + o + 6+ =1(1) M, .‘ b
d*x ¢ £
M, dtzz + Bz _d + KXy + B1 {xg Xq)+ K1(x2 x4) = f(t) ceenn(2)

On replacing the displacements by velocity in the differential equations (1) and (2) goveming the mechanical system

[’e Ix_dv dx—vandx j‘vdt)
dt

T a

M, dV1 B +K t=0 )
at vy = Vo) +Kif (v - Vz}d

M, g;—tl +Bovy + KQI voat 4 By(v, —vy) + K1I(“2 -y dt=ft) ... (4)

F-V ANALOGOUS CIRCUIT:

The electrical analogous elements for the elements of mechanical system are given below.
f)—>elt) v, - i M, > L, K, - 1/C, B, > R,
v, = |, M, > L, K, = 1/C, B, - R,

The mesh basis equations using Kirchoff's voltage law for the circuitshown in fig . are given below,
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eft)

D Ls
N
P R,§ § R,
LB
(D o
C,= =—=C,
e(t) L, :
D .
+| .. - N +r6g§\" %
Uiy
: R, (i, —i;) § R, R, 2> Ri(i, — i) Le dt Ri, = R
N + i
— [, —i,)dt ==C 1. e
3 JIC lz)(ﬂ_ : C,_|_+—é;-'|'(|2—:i1)dl . | :zdt__!_ C.
dis oo v 1
L-.d—';m«_hI2)+af(u.—rz)cn=o
d|2 - . 1 L . .
Lo==+Ryi, + f'z dt+—[ (i, i) dt+ Ry(i, — i) = e(t)
dt C, C,
F-I ANALOGOUS CIRCUIT:
The electrical analogous elements for the elements of mechanical system are given below.
=i v,->v, M, —»C, B, > 1/R, K, = 1L,
Vv, >V, M,—»C, B,—> 1R, K, > 1L,
The node basis equations using Kirchoff’s current law for the circuit shown infig. , are given below,
VZ
®iw o § R, %ﬁ L,
dv
crag—»r—u v2}+~J(v1 Vo) dt=0
dv 1 ' 1 .
C, —2 + —V, + — | Vodt + —(v, — v, ) + — | (v, — v;)dt = i(t)
gt RV T VA g e v e vt =i
A = 1
.1(V1 V2) e A /\/A Vz v1 R e E;(VZ_\“)dt 1
R, ¥ P —Jvzdl
v,' 1 V2
v ty f e
101 dt 000 " v,.——/zgzlﬁ;\— ll le l ;
c 1—> : 1 < i(t) ) L,
'T —J(vy=v,)dt :f(vz - Vy)dt
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3) Write the differential equations governing the mechanical system shown
in the fig. Draw the torque-voltage and torque-current electrical analogous
circuits and verify by writing the mesh and nodal equations.

W

AT

\ Ky Y K,
= Ji (L0 2 )

1 2
SOL:
The free body diagram of J is shown infig  The opposing torques are marked as T“, T, and T
d% de
TJT="|1dT;_'1 : Tm:Bmd_; v Ta=K(6:-83) N\ \; J \ A \\
' APl / K
By Newton's second law, T, + T, +T,,=T T 8 T To Ta
d’e de
| N3 @ 2‘ B, dtl +Ki0,-0)=T .. (1)
The free body diagram of J, is shown infig . The opposing torques are markedas T, T, T,and T, ,.
y 5
TP=J2%t—622— i In —Bzd:: .
2227
2
To=K8 i Ta=K(0,-6
K2 . 2V 2 k‘l_ 1( 2 1) 63 T,z sz Tu Tg«,
By Newton's second law, T, + T, +T,+T,,=0
2
4, % g, d:tz KB+ Koy -0y=0 . o @)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing the
mechanical rotational system we get,

. d%0 _de _ do '
(l_e_‘l dt2 dt ; -—d-t—:(:) and B:I(J) dt]

J 9§—+B@1+K1f ©,—-0,)dt= T e(3)
do, )
Jz—dtm-rBzu 2 +KoJo,dt+ K (o, —o)dt=0

T-V ANALOGOUS CIRCUIT:

gm
=

| |
)
o

2
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L,

R
AR FO5—

- "Ry | " di +|

L.E L, | ' et dt
dt . _
N -Clj(i,-"i?)dt —C, Q i,y C = —J(Iz—h)dt
1 —_— —-—
et (*) o | flzdt T

The mesh basis equations using Kirchoff's voltage law for the circuitshown infig are given below

dl‘ +Ry;+ j(i1 —iz)=e()

e +R212T—fi2dt+ j(iz-ij)m;o -----

dt
Itis observed thatthe mesh basis equatxons (5) and (6) are similar to the differential equations (3) and (4) govemning the
mechanical system.
T-I ANALOGOUS CIRCUIT:
. vy L, Vs
500 1

o® | |
T Ci—= R1§ _ - C.—= R2§ L.

— [ {v, — v, )dt
o Dltgwe T .
—‘BLUD“"—' . ’6;0?5‘
1 1 dv 1

"
R1§ ’ CE:: R2§ : Lz%

The electrical analogous elements for the elements of mechanical rotational system are given below

T>i) B,-UR, o -V, J,>C, KoL,
B, > 1/R, @, >V, J,—>C, K,— 1L,
The node basis equations using Kirchoff's current law for the circuit shown infig are given below
C, c:j‘:* E:TV’ ) [{vy— v,)dt = (t) i)
C,—% 2, lvz 4 mjvzdt PR j(vz - v,)dt = -{8)
a R,
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4) Write the differential equations governing the mechanical system shown
in the fig. Draw the torque-voltage and torque-current electrical analogous
circuits and verify by writing the mesh and nodal equations.

K,
T B K
H 4| g S P 4
1l
=
SOL:
The free body diagram of J, isshowninfig  The opposing torques aremarkedas T, T and T,.
dze d(e,-6
J1 Th1zs1"% \ \ : \ \ \\
: ‘ ., ,
K & £ XK
T =K(6,-83) T 6 - Ty Ty T

By Newton's second law, T, + T +T,=T

2 -
J1 t::u921 B1d(e1dt92) +K1(91—62)=T ..... (1)
The free body diagram of J, is shown infig  The opposing torques aremarkedas T, T, T,,and T,
d’e d(6, —95)
T, =4,852 . =B,—=2_ 3
T 2T g )J)‘}\\
2
d(o, -6 K ¥
TM = KI(GZ -G-J s T!.ﬂ = B-,“—('-ngi 6, sz To To Tu

By Newton's second law, T, + T, + T, + T, =0

d%8,

d(0,-6s) d(ﬁz
J +B +K -0)=0 o (2)
2 dtz 2 dt dt 1(92 e1) 0
The free body diagram of J, is shown infig  The opposing torques are marked as Ty Typand T,
d’e d(6, - 6,) -
To=di—= [ T,=B,——22 : T.,=K.0 . :
BT b2 = B2 K’ = MaYs \ \\l\]
X TS
By Newton's second law, T, + T, +T,,=0 9 T
3 i b2 ]

20, d(6, —6.)
d dt23 +B, 3dt -
On replacing the angular displacements by angular velocity in the differential equations

(1) and (2) governing the mechanical rotational system we get,

2
(i d9. % . B _5 and 5o jmdt]

d +Ki03=0 o (3)

Td2  dt | dt
J; d§‘+B,(co1 0,)+KJ(@-0,) dt=T e (4)
Jngmtz-+B,(c02—(01)+Bz(w2—m3)+K1j(m2—mT)dt=0 ----- ()
J3-(%—+Bz(m3—02)+K3jm3dt—0 ..... 6)
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T-V ANALOGOUS CIRCUIT:
The electrical analogous elements for the elements of mechanical rotational system are given below.

Toel) o, > | J, = L, B, - R, K, = 1/C,
o, —> i, J > L, B, - R, K, =» 1/C,
0y - Iy b=k Ll%
L, L, L, dt
55 T B 000 _L '
- v
C.

R ST C R
R, —_ L2 e _ m + 1,
(NS T Yy | R -i) S R,

o0 3

di,
—=
dt
L.
+ L - : C .,.W_
. . ? L d|3
Jliz-ipen + e at o,

CTL
* R H _ H . . T o
I - 2('?. |3)§ 2 R, § R?(IS _ |2) —-—C3 J-IB dt —— Ca.

R1§+R1(i2—-i1)(3' ) m Civ oy

The mesh basis equations using Kirchoff’s voltage law for the circuitshown infig are given below

L1%+R1(i, —i2)+Ci1j (i, - i,)dt = e(t) ., == @)
..... ®)
..... ©)

‘ —
icif’ﬁ e,
it)

®

frctisss €

The electrical analogous elements for the elements of mechanical rotational system are given below.

T=il) o,—> v, J, = C, B, - 1R, K, - 1/L,
o, V, J, » G, B, - 1/R, _ K, = 1L,
L@, V, J; = G,
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R
1 —(V, =V
WA (2 v)

1
R—(Va -V3)
-« v 2 - Vs
—(v2=vy) ey, 2 MWV j
P L R, R [osZa || v
v, &5 —— SR dt 3
l dv C,
X - +L¥C,—2 =
J‘(Vz Vﬁ)dt 02 dt
B ) ; g L,

The node basis equations using Kirchoff’s current law for the circuitshown infig are given below

dv 1 1 . .
CI—at—1+€-(v1 —Vy)+ L—1J'(v1 —v)dt=iy (10)
Doy : 1 A 11
Cz—a't%+i1-(v2_V1)+E;(v2-v3)+aj(v2—V1)dt=0 (11
= . i maas 000 e 12
Csd_t3+R_2(v3-v2)+L—3jV3 dt:o ( )

BLOCK DIAGRAM REPRESENTATION OF SYSTEMS

Block diagram: The shorthand pictorial representation of the cause-and-effect relationship between the

input and output of a physical system is known as block diagram. Figure = shows the representation of a
block diagram

R —> 69 |— Q9

Output: The value of input multiplied by the block gain is known as output.
From Fig.

C(s) = G(s)R(s)

Summing point: At summing point, two or more signals can be added or subtracted.
Y(s)

X(s) C(s)

2(s)
X(s), Y(s), and Z(s) are the inputs while C(s) is the output. From Fig.
C(s) = X(s) - Y(s) + Z(s)

In Fig. it can be written as

Take off point: The point at which the output signal of any block can be applied to two or more points is

known as take-off point. Figure = shows a take-off point. The output signal is analogous to voltage not the
current.
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> X(s)

/Thke-dfpolnt
> X(s)

X(s) > T

> X(s)

Forward path: The direction of flow of signal from input to output is known as forward path. Figure
shows a forward path. Individual block gains are G (s), G,(s), and G,(s) in Fig. from input to output of
the system.

Inpt ——»| G(9) 6(9) G(9) |———»oOutput

Feedback path: The direction of flow of signal from output to input is known as feedback path. Figure
shows the feedback path.

As) 6(9) 6(9) > (9

H(s)

iyl Wp—
<+ 22223 Feedback Path

)

Advantages of Block Diagram Representation

(1) It facilitates easier representation of complex systems.
(i) Calculation of transfer function by block diagram reduction techniques is easy.
(iii) Performance analysis of a complex system is simplified by determining its transfer
function.
(iv) It facilitates easier access of individual elements in a system that is represented by a
block diagram.
(v) It facilitates visualization of operation of the whole system by the flow of signals.

Disadvantages of Block Diagram Representation

(i) Itisdifficult to determine the actual composition of individual elements in a system.
(if) Representation of a system using block diagram is not unique.
(iii) The main source of signal flow cannot be represented definitely in a block diagram.

BLOCK DIAGRAM OF A CLOSED-LOOP SYSTEM

Figure shows an example of a block diagram of a closed-loop system. The output C(s)
is fed back to the summing point where it is compared with the reference input. When the
output is fed back to the summing point for comparison with the input, it is necessary to
convert the form of the output signal to that of the input signal. The role of the feedback
element is to modify the output before it is compared with the input. This conversion is
accomplished by the feedback element whose transfer function is H(s). The output of the
block C(s) in this case is obtained by multiplying the transfer function G(s) by the input to
the block E(s). The feedback signal that is fed back to the summing point for comparison with
the input is B(s) = C(s)H(s).
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Summing Take-off

point point
l C(s)
G(s) 0 R(s) G(s) C(s)
|1+ G(s) H(s)
H(s)
(a) (b)

The following terminology is defined with reference to the diagram of Figure

r(t). R(s) = reference input (command)

¢(r), C(s) = output (controlled variable)

b(1), B(s)

e(r), E(s)
G(s) = forward path transfer function
H(s) = feedback path transfer function

feedback signal

error signal

G(s) H(s) = L(s) = loop transfer function or open-loop transfer function

s
I(s) = F: = closed-loop transfer function or system transfer function
s

The closed-loop transfer function 7(s) can be expressed as a function of G(s) and H(s).
From Figure

C(s) = G(s) E(s)

and B(s) = C(s) H(s)
The error signal is

E(s) = R(s) — B(s)
Substituting Eqgs.

Cls) = G()IR(s) — B(s)]
= G(s)R(s) — G(5)B(s)
= G($)R(s) — G(s)H(s)C(s)
C(s)|1 + G(s)H(s)] = G(s)R(s)

Cis)  G(s)
R(s) 1+ G(s)H(s)

Use + sign for negative feedback and Use — sign for positive feedback.
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BLOCK DIAGRAM ALGEBRA - RULES FOR REDUCTION OF BLOCK DIAGRAM

RULE-1

Combining the
blocks in
Cascade

Y

G, X

G,

GG,

RULE-2

Combining the
blocks in
Parallel

RULE-3

Moving a take-
off point after
the block

Y

RULE-4

Moving a take-
off point ahead
of a block

RULE-5

Moving a
summing point
after the block

‘ G(X, = X,)
® X,
G >

RULE-6

Moving a
summing point
ahead of the
block

X,

(X, £X,/G)
> N
:
_ X,
1/G :

X,G + X,
G -

RULE-7

Elimination of
feedback loop

-+

RULE-8

Interchanging
the summing
points

RULE-9

Splitting a
summing point

RULE-10

Moving a take-

off point ahead

of a summing
point

RULE-11

Moving a take-
off point after
a summing
point

RULE-12

Combining the
summing
points

>
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PROBLEMS
1) Draw the block diagram of series RLC circuit as shown in the fig.

SOL:
Applying Kirchhoff’s voltage law to the loop shown above,

di(t)
dt

v;(t) = Ri(t) + L + (1)

: ./
Vo(t) = — [ i(t)dt
Laplace transformation of the above equations with initial conditions assumed zero will be:
Vi(s) = RI(s) + sLI(s)+ V,(s)
I(s)(R+ sL) = Vi(s) — V,(s)

_ Vi(s) — Vi(s)

I(s) R+ sL
Vils) = —1(5)
1

I(s) = [Vi(s) — Vo(s)] R+ sL

First we shall use a summing point.

V.(s) Vi(s)-V,(s)
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1
The output of the summing point is passed through a block of transfer function: R sL

+ ~\ V,(s)-V,(s)
Vis) >| == —>I(s)

Vol(s)
Next, we shall use the other equation, N\ — 1 i
Vals) = <51(5)
1
I(s) = > V,(s)
sC

We combine the above two blocks and then with the help of a take off point, we connect the

output to the summing point where we need the output variable as one of the inputs.

y + Vi(s)-V,(s) 1 I(s) 1 v.(s)
) 4 >‘ R+sL 2| S °

2) Reduce the block diagram shown in the fig. and find C / R.

SOL:
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Step 3- Combining parallel blocks

T ey

g

Step 4: Combining blocks in cascade

R > G >G2+&——r§ C
: | 1+GH G,| !
C_(_G G +G3 _|_G GG +Gy | GG+ Gy
R |1+G G, ) (1+GHJ{ G, T 1+GH

3) Using the block diagram reduction techniques, find the closed loop
transfer function of the system whose block diagram is shown in the fig.

SOL:
Step 1: Maving the branch point before the block
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Step 3: Moving summing point before the block.

GGGy + Ga)

1+(GGoH,)
. .-"’. E i G1
"..
G](G2G3 + Gd) G-‘GzGE, + G1G4
1+ GGH, N 1+ GGH, _ GGG +GG,
14 G1(G2G3 + G4) i‘&_ 1+ G1G2H1 + G2G3H2 + G4H2 1+ G1G2H1 + GQGaHz + Gde
1 + G1GEH1 G1 1 + G‘IGQHT 7 |

Step 7-Eliminating the feedback path

R G{G,G, + GGy C
1+ G’G2H1 + GzGaHz + G4H2 v
GG,Gs + GGy
C_ 11 GGH +GGH, +GH,  _ GG,Gs + GG,
R 1 G1G2G3 + G1G4 1+ G1G2H1 + G2G3H2 + G4H2 + GTG263 + G1G4

TITGG,H, + G,Gat; + GaHy
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4) Obtain the transfer function C(s) / R(s) of the system whose block

diagram is shown in the fig.
e

L2

SOL:
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Step 5 :Combining the blocks in cascade and eliminating feedback path

..................
......

GG | cs)| _GoGs
1+ GoHy + G,GaH, ; ' 1+ GoH,
_ 1+ G2GaHy
1+ G,H,
Step 6 : Eliminating forward path aG.a
‘ P2\a
R{S) G‘[GEGS C(S) 1+ G2H1 + G2G3H1
1+ GH, + G,G,H, - GGH 1o GGGy [ H
‘ =l s Tf T4 G H, + G,G,H, | G,
a1 ; -
qlhy
. C(s) _ G,G,Gs

L8 G
R(s) 1t GuH, + G,GH, - GGH,

5) Using the block diagram reduction techniques, find the closed loop
transfer function C(s)/R(s) of the system whose block diagram is shown in
the fig.

SOL:
Step 1 :Rearranging the branch points

R(S) : C(S)
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Step 3 : Moving the branch point after the block.

C(3S)

Step 5 : Combining the blocks in cascade

R(S)

[ —————— TP PP T TR EL]

‘_.

G,G3Gs

1 G4H1H2 — G2G3Gd

1- G,G,GiH; 1+ G HH, - G,G,G4H;
1+ G HH,
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Step 7 :Combining the blocks in cascade and eliminating the feedback path

R(S) G,C4Gy

M GHR, - G.G0H, | i

H,(1+ G,HH,)

G,G,G5Gy
1+ G,HH, - G,G:G.H, _ GG,G:Gs
_ E GG,G,G, ] [H4('1 + G‘,H1H21] 1+ GHH; - QEG3G4H3 + GG H (1+ G,HH,)
{1+ GHH, — GG3G4Hs G3G, .

Step 8 : Eliminating the unity feedback path.

-----------------------------------------------------------------------

G668, L ic(s)

R(S) |
' : 1+ G,HH, - G;G3G4H, + GiGH, (1+ GHAL)

GG,G,G,
_C(s) _ 1+ G, HH; - GGG H; +GG,H, (1+ G,HH,)
TRE) 44 GG2G4Gs
1+G,HH, - —G,G,GH, + GG H (1+ G HH,)
| GyG,G3Gy
T+ GgHHz - G2(33(34H3 + GG H(1+ GyHHy) + GG2G3Gy
G,G,G;3G,

" 1+ HHo(Gy + GiG5GaHa) + GGa(Hy + G3Ga) - G,G3GiaHa
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SIGNAL FLOW GRAPH (SFG)

If the set of equations describing a system is known, it is possible to represent the system in another pictorial
form which is known as signal-flow graph. It may be regarded as a simplified version of a block diagram.
Signal-flow graph is a pictorial representation of a system which displays graphically the transmission of
signals in it. S.J. Mason introduced the signal-flow graph for representing the cause and effect of linear systems
which are modelled by algebraic equations. Although there is difference between physical appearances of the
signal-flow graph (SFG) and block diagram, the signal-flow graph is constrained by more rigid mathematical
rules whereas the usage of block diagram's notation is more liberal. In a signal-flow graph, all dependent and
independent variables are represented by the nodes, and the lines joining the nodes are known as branches. A
branch is associated with transmission gain and an arrow. Figure ~ shows the pictorial representation of a
system having two variables where x, = Ax .
A

o > O
X,

BASIC DEFINITIONS IN SFG

Consider the following signal flow graph.

b,
o—> O
X, %
Input or source node: The node having only outgoing branches is called input or source node. In Fig. x, is

1
the input or source node. -

Sink node: The node having only incoming branches is called sink node or output node. In Fig. X, is the
sink or output node.

Chain node: The node having both incoming and outgoing branches is know as chain node. In Fig.
X,y Xy X,y X, X, X,, and x, are all chain nodes.

Forward path: A path from input to output is known as forward path.
In Figure there are four forward paths as follows:
X, =X, =X, = X, = Xg — X — X, — Xy — X,: First forward path

6 7
X, =X, =X, — X, — X, — X, — X, — X, Second forward path
X, =X, = X; = X, — Xg — X, — Xg — X, Third forward path
X, =X, =X, =X, — X, — X, — x,: Fourth forward path

In determining forward path, any node should not be traded twice.

Feedback Loop/ Feedback Path: If a loop originates and terminates at the same node, it is known as feedback
loop. In Fig. there are three feedback loops or feedback paths as follows:

x, —x, — x,: First feedback loop

X, - X, —X,— X, — X, — X, — X, — x,: Second feedback loop, x, - x, — x, — x, — x, — x,: Third feedback loop.

Self-Loop: A loop that consists of only one node is known as self-loop. In determining forward path or feedback

path, the self-loop should not be taken into account. In Fig. 1., at x,, is the self-loop.
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Path Gain: The product of gains going through a forward path is called path gain. In Fig. the path gain for
the first forward path is

P Il "51’\4’45’56'67‘78‘89

Similarly, the path gains for the second, third and fourth paths are

P =1 1 2’24’45’56’67%8’89

P s =l il lealso AN Py =11 1 2 1t respectively.

Dummy Node: If the incoming as well as outgoing branches exist at the first and the last node representing
input and output variables, these nodes cannot be taken as input and output nodes. In such cases, separate input
and output nodes are created by adding branches with gain 1. These nodes are know as dummy nodes. Fig.
shows the dummy nodes.

X . . 1 X 5 x 1
e N N A Ny

(a) Without input and output nodes (b) Dummy nodes

Non touching loops : If there is no node common in between the two or more
loops, such loops are said to be non touching loops.

The Fig. (2)&(b) show a combination of non touching loops of two and three loops.

L,
X4 X2 X3 Xg g Xg
™ L L,

(a) Two non touching loops (b) Three non touching loops

Similarly if there is no node common in between a forward path and a feedback loop,
a loop is said to be non touching to that forward path.

The Fig. ' (a) and (b) shows such a loop which is non touching to a forward path.

orward path Forward path

Non touching loop Self loop non touching
to forward path shown to forward path shown
(a) (b)

Loop Gain : The product of all the gains of the branches forming a loop is called
loop ‘gain. For a self loop, gain indicated along it is its gain. Generally such loop
gains are denoted by ‘L’ e.g. L,, L, etc.

-H; -2
(a) (b)

In the Fig. (a), there is one loop with gain L, = G2 x-H; = - GzH,

In the Fig. (b}, there are two loops with gains.

Ly = 4x-2=-8 and other self loop with L =-5
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PROPERTIES OF SIGNAL FLOW GRAPH

The basic properties of signal flow graph are the following :

0

(iD)
(iii)
(v)
)

(vi)

(vii)

(viit)

The algebraic equations which are used to construct signal flow graph must be in the form
of cause and effect relationship.

Signal flow graph is applicable to linear systems only.
A node in the signal flow graph represents the variable or signal.

A node adds the signals of all incoming branches and transmits the sum to all outgoing
branches. ' '

A mixed node which has both incoming and outgoing signals can be treated as an output
node by adding an outgoing branch of unity transmittance.

A branch indicates functional dependence of one signal on the other.

The signals travel along branches only in the marked direction and when it travels it gets
multiplied by the gain or transmittance of the branch.

The signal flow graph of system is not unique. By rearranging the system equations different
types of signal flow graphs can be drawn for a given system.

MASON’S GAIN FORMULA - REDUCTION OF SIGNAL FLOW GRAPH

The Mason's gain formula is used to determine the transfer function of the system from the signal

flow graph of the system.

Let,

. R(s) = Irfput to the system

C(s) = Output of the system
C(s)

Now, Transfer function of the system, T(s)=—=

R(s)

Mason's gain formula states the overall gain of the system [transfer function] as follows,

where, T

. 1
Overall gain, T=E ; P Ay

T(s) = Transfer function of the system

Px = Forward path gain of K* forward path

K = Number of forward paths in the signal flow graph

A = 1—(Sum of individual loop gains)

. [Sum of gain products of all possible )
combinations of two non - touching loops
Sum of gain products of all possible

- [combinations of three non - touching loops)

Ax = A for that part of the graph which is not touching K# forward path

Page47



PROBLEMS

1) Find the overall transfer function of the system whose signal flow graph is
shown in the fig.

_H2
R(s) , G, G, G, G, 1 C(s)
e — > > > — >
11 ?\_/5 5 7 8
-H, -H,
GS
SOL:
Forward Path Gains
There are two forward paths. .. K=2
Let forward path gains be P1and Pz :
RO 1 & & & & G 1 0
= : \"4 > OoO—p—<C ~- O > O Q)
1 2 3 4 5 6 7 8
Forward path-1
Ris) 1 G, G, 1 C©s)
S R

Forward path-2.

Gain of forward path-1, P1 = G1 G2 G3 G‘G
Gain of forward path-2, P, = GG 5G 5

Individual Loop Gain

There are three individual Ioops Let individual loop gains be P11, P21 and Pa.

&S S, \EY

Loop-1.

Loop-I:‘ Loop-3.
Loop gain of individual loop-1, P11 =-GzHs

Loop gain of individual loop-2, P21 =-G2GsHz
Loop gain of individual loop-3, P31 =-GsHs

Gain Products of Two Non-touching Loops

There are two combinations of twa non-touching loops. Let the gain products of two non touching loops be Przand Pzz.

3 qz-46£§ \_/

First combination of 2 non-touching loops. Second combmarzon of 2 non-touching Ioops

7

Gain product of first combination
of two non touching loops } Pro = PPy = (CGoH) (FGsH) = GG,

Gain product of second combination
P,, = P, Pay = (—G,GaH, ) (-GsHs) = G,G3GH,H
of two non touching loops } 2 = PPy = (CGGka) (GsFs) e
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Calculation of A and A,

A = 1-(P11+ P21 + P31) + (P12 + P)
= 1= (-GiaHi- GeGoHz - Geo) + (GeGeHiHo+ GoGiGisHaHy)
=1+ GzHi+GeGsHz + GsHa + G2GsH1Hs + G2GsGsHzHs
A1 = 1, Since there is no part of graph which is not touching with first forward path.
The part of the graph which is non touching with second forward path is shown in fig

e 3 > 4
Az = 1-Py1=1-(-GaHi) = 1+ Gokh \.G.j
H

-H

Transfer Function, T

By Mason's gain formula the transfer function, T is given by,
1 1
T = ZZ Pay = X (PA;+PA,)  (Number of forward paths is 2 and so K = 2)
K

GG2G3G4Gs + G4GsGs (1+G,H,)
1+ G H; + G,G3H, + GgH, + G,GsHH; + G,G3GsH,H,
G.G,G;G,G; + G,GsGg + G,G,GsGgH,
1+ GH, + G,G3H, + GsHy + G,GsHH, + G,G3GsHoH,
G,G,G; [GG; +G; /G, + GgH, |
1+ GoH, + G,G3H, + GsHj + G,GgHH3 + G,G3GsHoH,

2) Find the overall transfer function of the system whose signal flow graph is
shown in the fig.

SOL:
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Forward Path Gains

There are six forward paths. .. K=6

Let the forward path gains be P1, P2, P3, P4, Ps and Ps.

R(s) 1 1 C(s)

70 ©8
Forward path-1. Forward nath-2.
3 o4

-H,
Forward path-5 Forward path-6

Gain alf forward path-1, P1=G2Ga4 Gs
Gain of forward path-2, P2= G Gs G

Gain of forward path-3, P: =Gi1 G2 Gy
Gain of forward path-4, Ps = Gs Gs Gs
Gain of forward path-5, Ps=-G1GsGGsH
Gain of forward path-6, Ps=-G1G2GsGsHz

Individual Loop Gain

There are three individual loops. : -H,
Letindividual loop gains be P11, P21 and Pa1. o
H, 7%
G,
3 . 4 _H2
Loop-1 Loop-2

Loop gain of individual loop-1, P11 =-GsH: 7 8
Loop gain of individual loop-2, Pzi=-GsH: ) -H,
Loop gain of individual loop-3, Psr= GiGeH1Hz2 . Loop-3
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Gain Products of Two Non-touching Loops G,

-H, 7% -+ 8
There is only one combination of two non-touching 3 m 4 \\/
loops Let gain product of two non-touching loops be Piz. > _ -H,
Combination of 2 non-touching loops
} Pz = PPy = (-G4H,) (-GgH,) = G,GsHH,

Gain product of first combination
of two non - touching loops
Calculation of A and A,

A = 1-(Pn+Pa+Pa)+Puz = 1-(-GeHi- GsHz+G1GeH1Hz) + GaGsHiHz
= 1+ GsHi + GsHz-G1GsH1Hz + GeGsHiH2
The part of the graph non-touching forward path - 1 is shown in fig ; G; g
S Ar=1-(-GsHz) =1+ GsHz
The part of the graph non-touching forward path -2 is shown in fig B
- A2=1-(-GeHi) = 1+ GaHs
-H,

There is no part of the graph which is non-touching with forward paths 3, 4, 5and 6. 3 G, i

SAIE A= A= A=

Transfer Function; T

By Mason's gain formula the transfer function, T is given by,

T= % {Z P ﬁ.K] (Number of forward paths is six and so K = 6)

t—} (PA+ PoA, + PyAs + PiA, + PsAs + PsAg)

GG Gg(1+ GgHp) + GyGsG(1+ G Hy) + G,G,G, + G,GeGy
= G“GSGTGEH'I - G1G265G3H2
1+ GH, + GgH, - GGgHH, + G,GHH,

3) Find the overall transfer function C(s)/R(s) of the system whose signal
flow graph is shown in the fig.

1 1
R(s) o—» -0 ()
-,
SOL:
Step 1: There are two forward paths as follows:
1 G, G G, G, G 1
W) O OO O O O O - O ([5)
(a) First forward path
G
1 1 E@
R (5) Second forward path a g



Gain of first forward path (P)) = G,G,G,G,G;
Gain of second forward path (P,) =G,

Step 2: There are four loops as shown in Fig.

G,
G, Cj @Qfﬁﬁs
-, +, #, -+,
Loop gain (L,) of the loop shown in Fig. =-G,H,
Loop gain (L,) of the loop shown in Fig. =-GH,
Loop gain (L,) of the loop shown in Fig. =-G,G,G,G,GH,
Loop gain (L,) of the loop shown in Fig. =-GH,

Step 3: Out of four loops, Loop 1, Loop 2, and Loop 4 are ndn:touching. The combinations of two non-
touching loops are
(i) Loop 1, Loop 2: Loop gainL ,=G,G H H,
(i) Loop 1, Loop 4: Loop gainL,,=G,GH H,
(iii) Loop 2, Loop 4: Loop gain L,, = G,GH,H,
L, indicates ith of j non-touching loops.
Step 4: Out of these four loops, Loop 1, Loop 2 and Loop 4 are possible combinations of three non-
touching loops:
s L,=-G,GGHHH,
Step 5: There is no higher order non-touching loops.

Step 6:
A=1-(L,+L,+L,+L)+(L,+L,+L,)-L,
=1+(G,H,+GH,+G G,GGGH,+GH)+(G,GHH,+G,GHH,+GGHH,) +G,G,GHHH,
Step 7:
(i) Considering P, Loops 1, 2, 3, 4 touch it.
A=1-(0)=1
(ii) Considering P,, Loops 1, 2 do not touch it.
Az =1- ('GzHI 3 G4Hz) + GzG4H|Hz
=1+GH +GH,+GGHH

Step 8 &-45°2
T - FA +PFA, _GGGGGs+G(1+GH, +GH, +G,G,HH,)
A 1+(G,H, + G,H, + G,G,G,G,G,H, + G,H,)
+(G,G,HH, +G,GiH H,+G,GH,H,)
+G,G,G,H H,H,
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4) Find the overall transfer function C(s)/R(s) of the system whose signal
flow graph is shown in the fig.

. G
1 : 0 .
R(s) o—» /:l > i’ > o (s
. G,
G,
SOL:
Step 1: The SFG shown in Fig. has the following three forward paths:
Therefore,
1 G G, G, 1
S — OO > O
(a) First forward path
1 G 1
]
W
(b) Second forward path
1 1
G,
(c) Third forward path
R =GG,G,
F, =G,G,
P, =G,
Step 2: The SPG shown in Fig. has the following loops:
H
VAR N,
G,
(a) Loop 1 (b) Loop 2

L=GH, and L,=G;
Step 3: There are higher order non-touching loops. Therefore,
L, =G,H,G
Step 4: There are no three or more non-touching loops.
StepS5: A=1-(L+L)+L, = 1-GH, -G, +GGH,
Step7: ForP,A =1
For P, A, =1
ForP, A, =1
Step 8:

Transfer function = CGs) _HRA +BA, +RA, GGG, +GG, +G,

R(s) A 1-G,H, -G, +G,GH,

PageE 3



S)
Construct the signal-flow graphs for the following set of equations:
Y, =G)Y, ~-G)JY,
Y, =G,Y,+GY,
Y =G Y +GJ,
where Y, is the output.

Using Mason’s gain formula find the transfer function of the system
SOL:
From equation ¥, =G Y, - G,Y,, Fig. is drawn.

2"

G Y Z

Yl o_.w
-G,
Using equation Y, = G,Y, + G,Y,, Fig. is modified as follows:

G,
G % g
Y No—»—Qq—> A
\”i/
-G,
Using equation Y, =G,Y, + G,

Y, Fig. is modified as follows

Using dummy nodes for input and output, Fig. becomes

G,
1 Y 6 );G‘par
ity oy o (s)
Y

>

—

-

R(s)
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Step 1:
g PI = GIGJG‘, and Pz = Gs

1 G, G, G, 1
o —O——O—F+—O——+—O0——+—0
(@) First forward path
1 1
G,

Step 2:

-G,
(a) Loop 1 (b) Loop 2
; L =-G,G,G,andL,=G,
Step 3: There are no non-touching Loops

Step 4:
A = 1-(L+L)=1-(-G,G,G; +G,) =1+ G,G,G, - G,
Step S: ForP,A = 1
ForP,A, = 1-G,
Step 6:

RA, + BA, _ GGG, +Gs(1-G,)
A 1+ G,G,G, -G,

Transfer function = ﬁ =
Y,

PageEE



TRANSFER FUNCTION, BLOCK DIAGRAM AND SIGNAL FLOW GRAPH
OF ARMATURE CONTROLLED DC MOTOR

TRANSFER FUNCTION:

>

R = {l’l
+ pu¢{d

| o ?%E—*H

Bg US'ma Kivehoff s |aw Write Volbaaa eﬂvqﬂhUm f-f-or armakuse

n('—(—-é

Civeul, we 6

iy = Swm of the Volzge Aurops

Sum o} the \/olh(r.je
Ai
V-e, = 1R+ Ldt
= R L_'f_i;_. + €
V= tR+ LI b
conhene € is back em-f- of the motor
eb o{ _SF(?QGL
é?-v = Speed oﬂil the d-¢ motor
dt
e o __(':1_9-,
dat
do
&b = Kg'&?
Whene kB:OnS'Im&‘ V/rqd/Sc.c.-
N . di “de
- vf'R*LF’fKB—a—t_— —s ()

Aﬁum’wg all (mibial Conditions to be Revo, -l:oJLin(cl LT fos Equ )

Vi) = RTIE)+ sL T&) + Kg'$ O®
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Th «a Cl~c o bor ” e t“”"‘l'“" dew.topo d s P""P"" P

p'ro&uck of wain »Flux aund QOQrmabuse Croved

Since the -F-ield w‘mdt‘nttj 1< Sopwra,l:cly exeil-ed bs d'OSmm(e/
-f)"\-\x § qut“ Constamt .

Now the C{bve,topad L-orcvue Coum be Lovibtem ag
T ol T

T = )<T T
hone K i Cotant (N )
Now Cons\Av\ the wmechami cal Sgsim o_f_ &c. ™o luy
B

g

6

—‘;pp\i ed

Ba \L&;V\g U'A\uMb@\t‘S P"""Cif"e/
T =T+ T

= s de
T:J.dt rHSdt

"Tﬁ-t '\TOYCVue CLPPLCd on H'n '6'0{'51{7‘\07)6& me chanical Sd.ﬂ_om
1S o,ckua.uﬁ the Eovaace dwdoped_ ba the d-c. molor-

Now d"é‘ .dg
L{ r =4 a.g:+8 At

Tazmg LT on bethh Sidey
T(s) = J-5- Q)+ Be O —> (2)

Ky Te) = (Ts™+ 135)8(-‘)

T(s) - M> &) i ()
Ker
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@ G

VEs) = (RtsL) (‘T”(_Si) o6) tFkps OC

e

Koy
A O
v - LELR(TSHRO + 5 Ke ke] 06
_ o
o) Ky -
TR 2 ot
Ve (sL+R) (T R¢) 4 < Kea Kt

BLOCK DIAGRAM:
T Jeplac Toendf@un @3 o Gu offoldiel g Sucung Y
Bl el C,C)\i'noui_r;( X rolgl oW

TP Ra oS To) +E,0 = Vi O
D Tal) Ratlas) = Vy©- By

I\(J)—'l ) “v'\;’“ =
o ot LS [c 8)) [b(f)]

Vi 4
TR AT Lo

=6Q)
TS = Ky T () -

T | ke — T®

T'06) + BS ©F) - T
O uk WE = SOE)

T~ TS 5 + 6 wo(S)

w(j‘) - -—_._1____
IS5+0 Ty
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TS 1
| 5 6w

EL,O® = kK SoQ)
= Ly w(@

L9(s)

SRS
S
© () 5 (s)
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TRANSFER FUNCTION, BLOCK DIAGRAM AND SIGNAL FLOW GRAPH
OF FIELD CONTROLLED DC MOTOR

TRANSFER FUNCTION:

La Ra
hy T
Conshaunk-
Dr < Cuoreuk
V:]l L J SOuNCe

£

(]
D

B(d tu'mg K\/L} wribe the Q\Dop e:vuai-ion —Pm' the CQosec{ Q@P(’*t

Sum of the app\»‘ed deodw
= Crien OP Hae Vb)l:a(.ﬂd d\’LyS

dz,
Bl B Bl ey

Tang Lap'qce Tfa,v\s-f'orm , We 8d.

Vo) = (Ry+<ly) Tpeo) —% Q)
The torque dwaope,d ba the -F—ie\d Contwlled d-C motor
depewif On Onla the mwn—\F]ux. The veqsom $€ the Armatune
wmdmg ' Connedted with Comstmuk Cuswnmeut Sowace -
SO0 T, 15 Constaut
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ﬂrcvug A F'L{X
Bu- we ¥now thak , #Iqx X I#

(TO\’tvue [0 ¢ 3'_:}1
T = K I UJ‘\U\(’, kb - N"M/M.

f]_ﬂ wne de;mlor.
(‘:)v Torgrue Qn)\!edrr f K& I __'['f—; &)
crgru - Kt’ I%(S)
ctew O A-c . motor

Now Consyden the me,CJ/LGUMCﬂR- Sa

& /
e

rawhed

Bg D' Alembent s Pﬁﬂdp‘{'

. ing Tovgue
Quem o} the applied boquey = Sun of & Oppecg b

T=Ty e
T &J> 23/'% B cif,
) Uy LTT - e 1 B O
T = [J{"-{—Bs] o) R %

@ 1?\@
= KeTpl) = (T 5%+ B O - ol g (@
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@ ‘m@
=¥ ks [,_Xf_@_d] ~ [:}“""—}-Bs]@(:)

E—f + 5 L4P
Ky

o) - .

% 6) (Rf sl ) (Ts% 8s)

:;) ﬂoﬁf‘i F&’\ fw\dicn =

BLOCK DIAGRAM:
The loq?)ac,t By [Eure €23 ch. cﬂé&bw;nw Kigr) 90(,@;1/:«41:7 the
eeld  Condindled P Motal cow

Tre‘ = = = V,@(S)
(?I\TLfS

T(_f) = J‘(H T,f (5)

Igg)—m——V’l‘(ﬁ)

; ’ TS
o0+ T

T© I .
I5+B5 \——> O G)

@Yf\b)w\if@ old blotkg

Q)
V“-——E; @—ﬂ o(3)

SIGNAL FLOW GRAPH:
\
Q13
-;: f‘of ra o
{2 Tw 10 505

!} + 35ds

0—
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FEEDBACK CONTROL SYSTEM CHARACTERISTICS

T Condr jgﬁWg/ bhe qudback Juducey
G/XiEmwaJ Ouﬁhmb“m@ ellycts C?W'S] amd - also Teduces
e sensifiily o thx Systm Ao Paramelin Vaniotions

™Tue Poﬂam’\din May Vo due. b Jome Cf\amg,e
im Condibiony | P vanwe AM Pwﬁmﬂfe‘n affel th
penfdumante & e suslim. o b N33y fo makg
the Syslam InSorgdie + Sudh Panamaly  Variaions |

The  beneficad  ofpch & feedbage  ane quuen  beloes.

D) e Cordnolled Vosiably acanabily follnsy gy o) inod vale

d‘.},hﬁ]b@‘ﬂ@g ang 3:1{6\,{,5 D’Uldb\(]d.
P Tfpck o Variakons. i cnbvdlyy ard procesy

Paosmelens on Tt Systm Pefumancy 3 Swuduced | 4
(MC@E«b& J—U}dj.
&) Ferdbatc in onbligl  S936m gﬂ\oﬁ«dﬂ

AmpPaows . Speed
ds iy Tsron.

i) EFFECT OF PARAMETER VARIATIONS IN AN OPEN LOOP CONTROL
SYSTEM

Consider an open loop control system shown in the Fig.
function of the system is given by,

_(_:_Sfl R(s) A Gs) C(s)
R(s)

The overall transfer

G(s) =

C(s)

G(s)-R(s)

Let A G(s) be the change in G(s) due to the parameter variations. The corresponding
change in the output be A C(s).
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C(s)+AC(s) = [G(s) + A G(s)] R(s)
C(s)+ A C(s) = G(s)-R(s) + A G(s)-R(s)
Cs)+AC(s) = C(s)+ A G(s)- R(s)

AC(s) = AG(s)R(s) (D

The equation (1), gives the effect of change in transfer function, due to the parameter
variations, on the system output, in an open loop control system.

ii) EFFECT OF PARAMETER VARIATIONS IN A CLOSED LOOP CONTROL
SYSTEM

Consider a closed loop system as shown in
Fig. The signal E(s) is the Laplace transform of

the error signal e(t). The overall transfer function of R(s) E) G(s) )
the system is given by, _
_ C(s) G(s) His)
T®) = /e "1+ CEHE)

Let AG(s) be the change in G(s) which is due to the parameter variations in the
system. The corresponding change in the output be A C(s).

_ [G(s) + A G(s)] )
CE+aCE) = 4 +[GE+AGE]HE) Res)
Cls)+ A Cls) = [G(s) +A G(s)]

1+ G(s)H(s) + A G(s)H(s) R(s)

The term A G(s)H(s) is negligibly small as compared to G(s)H(s), as the change A G(s) is
very small compared to G(s). Neglecting the term A G(s)H(s) from the denominator, we get,

G(s) + A G(s)

Ce+ACE = Toemmae

*R(s)
Gs) AGs)
Yo O AR FTE 0 : ON

AG(s)
i+ Gome *©

C(s) +A C(s)

R(s)

C(s)+ A (U(s) C(s) +

AG(s)

AC(s) = TG(S)-%.R{S) . {2)

The equation (2), gives the change in the output due to the parameter variations in
G(s), in a closed loop system.

In practice, the magnitude of 1 + G(s)H(s) is very much greater than unity.

[G(s)H(s) >> 1

Hence it can be observed from the equations (1) and (2), that in a closed loop system,
due to the feedback, the change in the output, due to the parameter variations in G(s), is
reduced by the factor [1+G(s)H(s)] . In an open loop system, such a reduction does not
exist, due to the absence of the feedback.
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iii) EFFECT OF FEEDBACK ON SENSITIVITY

The [nam ym‘dmg 4 uuxd o dey il
the oulakivg Vardalon Jn the ouenalf o3l bumthon

T = X9 dut b e Vaniakon dm Gi(5) .
RS
e ,-§,¢Mﬁm5 an Mo Hefind o

}em%bﬁu;lj 5;: A fleﬂomﬁgz chmae o T

———

fen Gmtage Changg in Gits)

. WT . a1 g
DG/6, o6 T

RO ddyd deop system , B miikuily Gen B guum o

-
S, = 2T & . 3[61_ 5
O \+C_§11—3’ M

26 T
- _HC’M"%
(1t 61)* (%@
s l
el oy )
“@ 7 leam ©

Fal open loop Sysfepn b dovituly Gm - glun o

-
S = L b . 26y
G 3&7~%)E:i~@f"k6‘)

o O 20 bu Wmufy & o doyd doop Syslom
Ut o Vewalzn am & 3 swduad bg a Ff\(}—& @:(,]1.0 aj
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e Srsddily oy deed Loop systpm Vars alion
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o 2T R 1(!1) H (o)
on T 2H J'f'(?H G

-z —1-G ' N1
A Ty FAH . A
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iv) EFFECT OF FEEDBACK ON OVERALL GAIN

FOl own Loop Syglm Ty D L g6 )
RG)

Fo chavd Joop Suglin . g5 €O Gy —®

) [+6(5) H(S)

From .eg,@l:)/ Ahe onim <6, 4 I ducod by &

Gada) ) o dug k
G Tgaliug g@dbaack 7y

Ow:naﬂ Aaun C{g the %ﬂam ﬂedu(@

v) EFFECT OF FEEDBACK ON STABILITY

Consider an open loop system with overall transfer function as,

K
G = 55

The open loop pole is located at s=-T.
Now let a unity negative feedback is introduced in the system. The overall transfer
function of a closed loop system becomes,

K
Cs) _  S+T K
R(s) ~ K ~s+(K+T)
1+——
s+T

Thus the closed loop pole is now located at s=—(K+T). This is shown in the
Fig. (a) and (b).

Imj Imj
» 4
> + Real
> Real 4-_{—K: I ea
(a) Open loop system (b) Closed loop system
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Thus the feedback controls the time response i.c. dynamics of the system by adjusting
location of its poles. The stability of a system depends on the location of poles in s-plane.
Thus it can be concluded that the feedback affects the stability of the system. The feedback
may improve the stability and also may be harmful to the system from stability point of
view. The closed loop system may be unstable though the open loop system is stable.

Thus the stability of the system can be controlled by proper design and
application of the feedback.

vi) EFFECT OF FEEDBACK ON DISTURBANCE

(a) Disturbance in the forward path

Let us assumne that there is a disturbance in the forward path of a control system
produced due lo varying propertics of forward path elements or due to effect of
surrounding conditions. Fig. shows the disturbance signal T,(s) produced in the
forward path.

To(s)

Gy(s) | [ G,ts) |——2

H(s)

Assuming R(s) to be zero, let us obtain the ratio C(s) / T,(s) to study the effect of
disturbance on output. With R(s) = 0, system becomes.

Tals)

|—-1 —1 G1fs) |— Gyls)
H(s)

The resultant elements are,

C(s)

C\S} = GZ(S)
H'(s) = - G,(s)H(s)

Positive feedback
Negative input
C(s) - G,{s)
~Ta(8)  1-[G,()(- G, (5)H(s))]
Cs) _ _ =G,09)
Ty(s)  1+G, G,lKs)
_ =Ty G,
®) = 137¢, ¢H
In the denominator assume that 1<<G, G, H hence we get,
- —Tis)
e = = HE

Thus to make the effect of disturbance on the output as small as possible, the G,(s)
must be selected as large as possible.
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(b) Disturbance in the feedback path

These are produced due to the nonlinear behaviour of the fecedback path elements. The
Fig. shows the disturbance signal T;(s) produced in the feedback path.

R(s) Gyl) GAS) C(s)
Ho(s) —] Hyts)

+
Tals)

With R(s)=0, the effect of T,(s) on output can be obtained.

The system becomes,

5y —Gy(s) Gyls)Hofs) Q)
Tos)
C(s) _ -G, G, H,

T, = 1+G, G, A, H;

For large values of G,, G,, H,, H,, in the denominator 1 can be neglected.

RS A
& - HE)

Thus designing proper feedback element H,(s), the effect of disturbance
in feedback path on output can be reduced.

(c) Disturbance at the output Tls}

Consider that there is disturbance
Ty(s) affecting the output directly as R(s) e * Cs)
shown in the Fig.

with R(s} =0, we get

H(s)

Tq(s)
C(s) - 1 - 1
T,6)  1-[-GEHE)] 1+ GEHE) —G(s) His) =

For large values of G (s) H (s), 1 in denominator can be neglected.

T4(s)
G(s)H(s)

Thus if disturbance is affecting the output directly then by changing the values of
G(s), H(s)orboththeeffectofdxsturbmmhemnunused

The feedback minimizes the effect of disturbance signals occurring in the control
system.

C(s) =
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